Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Centrosymmetric aliovalent KTP isomorphs $\mathrm{KM}_{0.5}^{\mathrm{III}} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$ ($M=\mathrm{Cr}$ and Fe)

Artem A. Babaryk, ${ }^{\text {a* }}$ Igor V. Zatovsky, ${ }^{\text {a }}$ Vyacheslav N. Baumer, ${ }^{\text {b }}$ Nikolay S. Slobodyanik ${ }^{\text {a }}$ and Oleg V. Shishkin ${ }^{\text {b }}$
${ }^{\text {a D Department of Inorganic Chemistry, Taras Shevchenko National University, } 64}$ Volodymyrska str., 01033 Kyiv, Ukraine, and 'STC 'Institute for Single Crystals', NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine
Correspondence e-mail: babaryk@bigmir.net

Received 6 June 2006
Accepted 24 July 2006
Online 31 October 2006
Aliovalent KTP isomorphic compounds potassium chromium niobium oxide phosphate, $\mathrm{KCr}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$, and potassium iron niobium oxide phosphate, $\mathrm{KFe}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$, exhibit structures that differ from that of the non-centrosymmetric KTiOPO_{4}. There are two crystallographically independent octahedral sites, $M 1$ and $M 2$, statistically occupied by Nb and Cr (or Fe) atoms. The $M 1 \mathrm{O}_{6}$ and $M 2 \mathrm{O}_{6}$ octahedra are connected alternately to form a chain with a cis-trans arrangement. The Nb atoms prefer the $M 2$ sites arranged in a cis-like configuration. Each PO_{4} tetrahedon has the P atom on a twofold axis. Site-splitting at the K -atom position is observed in both compounds. In the isomorphous structures, one Nb atom lies on an inversion centre and the other on a twofold axis. Similarly with the pairs of $\mathrm{Fe} / \mathrm{Cr}$ sites, one is on an inversion centre and the other on a twofold axis.

Comment

Compounds with the KTiOPO_{4} (KTP) structure exhibit nonlinear optical properties (Zumsteg et al., 1976). The Nb^{5+} doped KTP crystal shows considerably improved second harmonic generation (SHG) (Thomas \& Watts, 1990; Zhang et al., 2004). Aliovalent isomorphs are constructed on the principle $x M^{5+}+y M^{2+}=z M^{4+}$, where M denotes a cation at an octahedral site. Such modelling for the replacement of Ti^{4+} ions is observed in $\mathrm{KMg}_{0.33} \mathrm{Nb}_{0.67} \mathrm{OPO}_{4}$ (McCarron \& Calabrese, 1993). The $\mathrm{Nb}(\mathrm{Mg})-\mathrm{O}$ bond lengths peculiar to the undistorted octahedron explain the small value of the SHG intensity. Rietveld analysis of $\mathrm{KV}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$ (Rangan et al., 1998) indicated a selective occupation of Nb at Ti 1 and of V at Ti 2 sites. The $\mathrm{Nb} 1(\mathrm{~V} 1) \mathrm{O}_{6}$ octahedron is more distorted than $\mathrm{Nb} 2(\mathrm{~V} 2) \mathrm{O}_{6}$. Compounds with general formula $\mathrm{K}_{0.5} M^{\prime}{ }_{0.5} \mathrm{OPO}_{4}\left(M=\mathrm{Nb}^{\mathrm{V}}\right.$ and $\mathrm{Ta}^{\mathrm{V}} ; M^{\prime}=\mathrm{Ti}^{\mathrm{III}}, \mathrm{V}^{\mathrm{III}}, \mathrm{Cr}^{\mathrm{III}}$ and $\left.\mathrm{Fe}^{\mathrm{III}}\right)$ and their derivatives, such as $\mathrm{K}_{0.5} M_{0.5} M_{0.5}^{\prime} \mathrm{OPO}_{4}(M=$ Nb^{V} and $\mathrm{Ta}^{\mathrm{V}} ; M^{\prime}=\mathrm{Ti}^{\mathrm{IV}}$ and V^{IV}) have also been investigated by powder diffraction (Gopalakrishnan et al., 1994).

The present research is devoted to studying new isomorphic KTP compounds, viz. $\mathrm{KCr}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$, (I), and $\mathrm{KFe}_{0.5} \mathrm{Nb}_{0.5}$ OPO_{4}, (II) (Fig. 1). In these compounds, $\mathrm{M1O}_{6}$ and $\mathrm{M2O}_{6}$ octahedra are linked to each other via a common O 2 atom and form an infinite chain along the [011] direction. The polyhedral linkage is based on the cis-trans arrangement observed in KTP (Tordjman et al., 1974). In both structures, disorder of Nb and Cr (or Fe) atoms is observed at octahedral sites. Nb atoms preferentially occupy $M 2$ sites, while Cr or Fe atoms

Figure 1
The common structure for $\mathrm{KCr}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$ and $\mathrm{KFe}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$ shown in the best view projection (50% probability displacement ellipsoids). [Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}-z$; (ii) $1-x,-y,-z$; (iii) $x, y,-1+z$; (iv) $1-x,-y, 1-z$; (v) $x, \frac{1}{2}-y, \frac{3}{2}-z$; (vi) $\frac{1}{2}-x,-y, z$.]

Figure 2
The planar arrangement of atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$ and O 4 , common for the K 1 and K 2 environments in $\mathrm{KCr}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$ and $\mathrm{KFe}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$. The symmetry codes are as given in Tables 1 and 2 (50% probability displacement ellipsoids).
occupy $M 1$ sites. The $M 2 \mathrm{O}_{6}$ octahedra arranged in the cis-like principle along the chain are considerably distorted; the M2O bond lengths are in the range 1.825 (9)-2.106 (7) \AA for (I) and 1.832 (6) -2.113 (5) \AA for (II) (Tables 1 and 2). The $M 2-$ O 2 bond length along the chain is much shorter than the others. The $\mathrm{M1O}_{6}$ octahedron is more regular than $M 2 \mathrm{O}_{6}$, with $M 1-\mathrm{O}$ bond lengths of 1.930 (1)-2.044 (1) \AA.

The three-dimensional structure arises from the $\left[\mathrm{MO}_{6}\right]_{\infty}$ chains interlinked by PO_{4} tetrahedra. Each PO_{4} tetrahedron has a symmetry of $m m 2$. The anionic framework contains cavities in which K^{+}ions are placed. K-site splitting into K 1 and K2 is observed for both (I) and (II). The split K1 and K2 sites have occupancies of 0.5 and are distant from one another by 1.426 (4) \AA for (I) and 1.481 (3) \AA for (II). The K atoms are coordinated by eight O atoms, with $\mathrm{K}-\mathrm{O}$ distances less than 3.2 Å. Four O atoms, namely, O1, O2, O3 and O4, lie practically on a plane parallel to (010) (Fig. 2), and are common for both the K1 and K2 environments, with short $\mathrm{K}-\mathrm{O}$ distances [2.667 (6)-2.794 (6) \AA for (I) and 2.693 (7)-2.994 (7) \AA for (II)]. The other O atoms around K are at distances of up to 3.189 (6) \AA in (I) and 3.163 (7) \AA in (II). A similar splitting has been reported for the K atom in KTP structures (Thomas \& Watts, 1990; Thomas et al., 1990; Norberg \& Ishizawa, 2005).

Experimental

Crystals of (I) were obtained by the self-flux method from KPO_{3} $(5.17 \mathrm{~g}), \mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}(7.14 \mathrm{~g}), \mathrm{CrPO}_{4}(1.16 \mathrm{~g})$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}(1.85 \mathrm{~g})$. The mixture was powdered in an agate mortar, placed in a 25 ml platinum crucible, and then heated at 1323 K for 2 h under stirring every 0.5 h with a platinum mixer. The solution was cooled at a rate of $40 \mathrm{~K} \mathrm{~h}^{-1}$ to 1093 K . The rest of the glass was washed away with plenty of hot deionized water, adding 5% solutions of the disodium salt of ethylenediaminetetraacetic acid. Among a significant number of druses (crystal aggregates in which different crystal domains are joined in a chaotic way, e.g. a multiple twin), there were well formed green crystals with a typical KTP morphology (Bolt \& Bennema, 1990). Similarly, red crystals of (II) were grown from $\mathrm{KPO}_{3}(5.17 \mathrm{~g}), \mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ $(7.14 \mathrm{~g}), \mathrm{Fe}_{2} \mathrm{O}_{3}(1.16 \mathrm{~g})$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}(1.85 \mathrm{~g})$ under the same conditions as described for (I) above. The amount of iron, chromium, and niobium was determined using X-ray fluorescence analysis. The composition of the single crystals was verified using scanning electron microscopy.

Compound (I)

Crystal data

$\mathrm{KCr}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$	$Z=8$
$M_{r}=222.53$	$D_{x}=3.335 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, Pnna	Mo $K \alpha$ radiation
$a=12.849(3) \AA$	$\mu=3.86 \mathrm{~mm}^{-1}$
$b=10.672(2) \AA$	$T=293(2) \mathrm{K}$
$c=6.4635(13) \AA$	Prism, dark green
$V=886.3(3) \AA^{3}$	$0.4 \times 0.15 \times 0.06 \mathrm{~mm}$
Data collection	
Oxford Diffraction XCalibur-3	13131 measured reflections
\quad diffractometer	1075 independent reflections
φ and ω scans	1066 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.036$
$\quad($ Blessing, 1995)	$\theta_{\max }=28^{\circ}$
$\quad T_{\text {min }}=0.510, T_{\text {max }}=0.770$	

Refinement
Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0308 P)^{2}\right. \\
+16.175 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=3.20 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.50 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected bond lengths (\AA) for (I).

K1-K2	1.426 (4)	$\mathrm{K} 2-\mathrm{O} 2^{\text {iv }}$	3.133 (6)
K1-O3	2.667 (6)	$\mathrm{K} 2-\mathrm{O} 1^{\text {v }}$	3.162 (7)
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{i}}$	2.696 (6)	$\mathrm{K} 2-\mathrm{O}^{\text {vi }}$	3.177 (6)
$\mathrm{K} 1-\mathrm{O} 1^{\text {ii }}$	2.734 (6)	$\mathrm{K} 2-\mathrm{O} 4^{\text {vii }}$	3.189 (6)
$\mathrm{K} 1-\mathrm{O} 4^{\mathrm{i}}$	2.792 (6)	Cr1-O1	2.018 (1)
$\mathrm{K} 1-\mathrm{O} 5^{\text {iii }}$	2.994 (6)	$\mathrm{Cr} 1-\mathrm{O} 2$	1.930 (1)
$\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	3.025 (6)	$\mathrm{Cr} 1-\mathrm{O} 4^{\text {viii }}$	1.992 (9)
$\mathrm{K} 1-\mathrm{O} 4^{\text {iii }}$	3.138 (6)	Cr2-O5	2.050 (3)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	3.152 (6)	$\mathrm{Cr} 2-\mathrm{O} 2$	1.825 (9)
K2-O3	2.717 (6)	Cr2-O3	2.106 (7)
$\mathrm{K} 2-\mathrm{O} 2^{\text {i }}$	2.726 (6)	P1-O4	1.529 (10)
K2-O5	2.797 (6)	P1-O5	1.540 (8)
$\mathrm{K} 2-\mathrm{O} 4^{\text {i }}$	2.981 (6)	P2-O1	1.530 (6)
$\mathrm{K} 2-\mathrm{O} 1^{\text {ii }}$	3.085 (7)	P2-O3	1.5437 (14)

Symmetry codes: (i) $x-\frac{3}{2}, y,-z+1$; (ii) $-x+\frac{1}{2},-y, z+1$; (iii) $-x+\frac{1}{2},-y, z$; (iv) $-x-1, y-\frac{1}{2}, z-\frac{1}{2}$; (v) $x,-y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (vii) $-x-1, y-\frac{1}{2}$, $z-\frac{3}{2}$; (viii) $-x+1,-y,-z+1$.

Compound (II)

Crystal data

$\mathrm{KFe}_{0.5} \mathrm{Nb}_{0.5} \mathrm{OPO}_{4}$
$M_{r}=224.45$
Orthorhombic, Pnna
$a=12.9675$ (13) \AA
$b=10.705$ (3) \AA
$c=6.4638(7) \AA$
$V=897.3(3) \AA^{3}$

Data collection

Oxford Diffraction XCalibur-3 diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.387, T_{\text {max }}=0.496$
$($ expected range $=0.512-0.656)$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=3.323 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.22 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, dark red } \\
& 0.2 \times 0.15 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

18570 measured reflections 1087 independent reflections 1021 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.027
$$

$\theta_{\text {max }}=28.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0 . P)^{2}\right. \\
& +22.555 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.47 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-1.32 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0048 \text { (5) }
\end{aligned}
$$

The centrosymmetric space group Pnna was chosen, with $R_{\text {int }}=$ 0.053 for (I) and $R_{\mathrm{int}}=0.039$ for (II). No indication of twinning was revealed during data processing. Linear combination restraints were applied in the process of the $\mathrm{Cr} / \mathrm{Nb}$ and $\mathrm{Fe} / \mathrm{Nb}$ ratio refinement (Sheldrick, 1997).

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bradenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Table 2
Selected bond lengths (Å) for (II).

K1-K2	1.481 (3)	$\mathrm{K} 2-\mathrm{O} 2{ }^{\text {vii }}$	3.134 (7)
$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.693 (7)	$\mathrm{K} 2-\mathrm{O} 4^{\mathrm{i}}$	3.162 (7)
K1-O3	2.700 (7)	$\mathrm{K} 2-\mathrm{O} 3^{\text {viii }}$	3.163 (7)
$\mathrm{K} 1-\mathrm{O} 1^{\text {ii }}$	2.748 (7)	Fe1-O1	2.044 (0)
$\mathrm{K} 1-\mathrm{O} 4^{\text {iii }}$	2.774 (7)	$\mathrm{Fe} 1-\mathrm{O} 2$	1.950 (6)
$\mathrm{K} 1-\mathrm{O} 5^{\text {iv }}$	3.013 (7)	$\mathrm{Fe} 1-\mathrm{O} 4{ }^{\text {viii }}$	2.011 (2)
$\mathrm{K} 1-\mathrm{O} 3^{\text {iv }}$	3.016 (7)	$\mathrm{Fe} 2-\mathrm{O} 5$	2.050 (7)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iv }}$	3.113 (7)	$\mathrm{Fe} 2-\mathrm{O} 2$	1.832 (6)
$\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$	3.117 (7)	Fe2-O3	2.113 (5)
K2-O3	2.734 (7)	P1-O4	1.527 (7)
$\mathrm{K} 2-\mathrm{O} 2^{\mathrm{i}}$	2.743 (7)	P1-O5	1.537 (6)
K2-O5	2.844 (7)	P2-O1	1.524 (7)
$\mathrm{K} 2-\mathrm{O} 4{ }^{\text {iii }}$	2.944 (7)	P2-O3	1.548 (3)
$\mathrm{K} 2-\mathrm{O} 1^{\text {vi }}$	3.132 (8)		

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ3009). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bolt, R. J. \& Bennema, P. (1990). J. Cryst. Growth, 102, 329-340.
Bradenburg, K. (2006). DIAMOND. Version 3.1b. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gopalakrishnan, J., Rangan, K. K., Prasad, B. R. \& Subramanian, C. K. (1994). J. Solid State Chem. 111, 41-47.

McCarron, E. M. III \& Calabrese, J. C. (1993). J. Solid State Chem. 102, 354361.

Norberg, S. T. \& Ishizawa, N. (2005). Acta Cryst. C61, i99-i102.
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.28p4beta (release 11-11-2005 CrysAlis171.NET). Oxford Diffraction Ltd, Abington, Oxfordshire, England.
Rangan, K. K., Verbaere, A. \& Gopalakrishnan, J. (1998). Mater. Res. Bull. 33, 395-399.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Thomas, P. A., Glazer, A. M. \& Watts, B. E. (1990). Acta Cryst. B46, 333-343.
Thomas, P. A. \& Watts, B. E. (1990). Solid State Commun. 73, 97-100.
Tordjman, I., Masse, R. \& Guitel, J. C. (1974). Z. Kristallogr. 139, 103-115.
Zhang, G., Zhang, D., Shen, H., Liu, W., Huang, C., Huang, L. \& Wei, Y. (2004). Opt. Commun. 241, 503-506.

Zumsteg, F. C., Bierlein, J. D. \& Gier, T. E. (1976). J. Appl. Phys. 47, 49804985.

